good morning!!!!

Skip to content
Snippets Groups Projects
api.go 59.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • // Copyright 2015 The go-ethereum Authors
    
    // This file is part of the go-ethereum library.
    //
    // The go-ethereum library is free software: you can redistribute it and/or modify
    // it under the terms of the GNU Lesser General Public License as published by
    // the Free Software Foundation, either version 3 of the License, or
    // (at your option) any later version.
    //
    // The go-ethereum library is distributed in the hope that it will be useful,
    // but WITHOUT ANY WARRANTY; without even the implied warranty of
    // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    // GNU Lesser General Public License for more details.
    //
    // You should have received a copy of the GNU Lesser General Public License
    // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    
    package ethapi
    
    import (
    
    	"github.com/davecgh/go-spew/spew"
    
    	"github.com/ethereum/go-ethereum/accounts"
    
    	"github.com/ethereum/go-ethereum/accounts/keystore"
    
    	"github.com/ethereum/go-ethereum/accounts/scwallet"
    
    	"github.com/ethereum/go-ethereum/common"
    
    	"github.com/ethereum/go-ethereum/common/hexutil"
    
    	"github.com/ethereum/go-ethereum/common/math"
    
    	"github.com/ethereum/go-ethereum/consensus/clique"
    
    	"github.com/ethereum/go-ethereum/consensus/ethash"
    
    	"github.com/ethereum/go-ethereum/core"
    
    	"github.com/ethereum/go-ethereum/core/rawdb"
    
    	"github.com/ethereum/go-ethereum/core/types"
    	"github.com/ethereum/go-ethereum/core/vm"
    	"github.com/ethereum/go-ethereum/crypto"
    
    	"github.com/ethereum/go-ethereum/log"
    
    	"github.com/ethereum/go-ethereum/p2p"
    
    	"github.com/ethereum/go-ethereum/params"
    
    	"github.com/ethereum/go-ethereum/rlp"
    	"github.com/ethereum/go-ethereum/rpc"
    	"github.com/syndtr/goleveldb/leveldb"
    
    	"github.com/tyler-smith/go-bip39"
    
    	defaultGasPrice = params.GWei
    
    // PublicEthereumAPI provides an API to access Ethereum related information.
    // It offers only methods that operate on public data that is freely available to anyone.
    type PublicEthereumAPI struct {
    
    // NewPublicEthereumAPI creates a new Ethereum protocol API.
    
    func NewPublicEthereumAPI(b Backend) *PublicEthereumAPI {
    	return &PublicEthereumAPI{b}
    
    }
    
    // GasPrice returns a suggestion for a gas price.
    
    func (s *PublicEthereumAPI) GasPrice(ctx context.Context) (*hexutil.Big, error) {
    	price, err := s.b.SuggestPrice(ctx)
    	return (*hexutil.Big)(price), err
    
    }
    
    // ProtocolVersion returns the current Ethereum protocol version this node supports
    
    func (s *PublicEthereumAPI) ProtocolVersion() hexutil.Uint {
    	return hexutil.Uint(s.b.ProtocolVersion())
    
    }
    
    // Syncing returns false in case the node is currently not syncing with the network. It can be up to date or has not
    // yet received the latest block headers from its pears. In case it is synchronizing:
    // - startingBlock: block number this node started to synchronise from
    // - currentBlock:  block number this node is currently importing
    // - highestBlock:  block number of the highest block header this node has received from peers
    // - pulledStates:  number of state entries processed until now
    // - knownStates:   number of known state entries that still need to be pulled
    func (s *PublicEthereumAPI) Syncing() (interface{}, error) {
    
    	progress := s.b.Downloader().Progress()
    
    
    	// Return not syncing if the synchronisation already completed
    
    	if progress.CurrentBlock >= progress.HighestBlock {
    
    		return false, nil
    	}
    	// Otherwise gather the block sync stats
    	return map[string]interface{}{
    
    		"startingBlock": hexutil.Uint64(progress.StartingBlock),
    		"currentBlock":  hexutil.Uint64(progress.CurrentBlock),
    		"highestBlock":  hexutil.Uint64(progress.HighestBlock),
    		"pulledStates":  hexutil.Uint64(progress.PulledStates),
    		"knownStates":   hexutil.Uint64(progress.KnownStates),
    
    	}, nil
    }
    
    // PublicTxPoolAPI offers and API for the transaction pool. It only operates on data that is non confidential.
    type PublicTxPoolAPI struct {
    	b Backend
    }
    
    // NewPublicTxPoolAPI creates a new tx pool service that gives information about the transaction pool.
    func NewPublicTxPoolAPI(b Backend) *PublicTxPoolAPI {
    	return &PublicTxPoolAPI{b}
    }
    
    // Content returns the transactions contained within the transaction pool.
    
    func (s *PublicTxPoolAPI) Content() map[string]map[string]map[string]*RPCTransaction {
    	content := map[string]map[string]map[string]*RPCTransaction{
    		"pending": make(map[string]map[string]*RPCTransaction),
    		"queued":  make(map[string]map[string]*RPCTransaction),
    
    	}
    	pending, queue := s.b.TxPoolContent()
    
    	// Flatten the pending transactions
    
    	for account, txs := range pending {
    		dump := make(map[string]*RPCTransaction)
    
    		for _, tx := range txs {
    			dump[fmt.Sprintf("%d", tx.Nonce())] = newRPCPendingTransaction(tx)
    
    		}
    		content["pending"][account.Hex()] = dump
    	}
    	// Flatten the queued transactions
    
    	for account, txs := range queue {
    		dump := make(map[string]*RPCTransaction)
    
    		for _, tx := range txs {
    			dump[fmt.Sprintf("%d", tx.Nonce())] = newRPCPendingTransaction(tx)
    
    		}
    		content["queued"][account.Hex()] = dump
    	}
    	return content
    }
    
    // Status returns the number of pending and queued transaction in the pool.
    
    func (s *PublicTxPoolAPI) Status() map[string]hexutil.Uint {
    
    	return map[string]hexutil.Uint{
    		"pending": hexutil.Uint(pending),
    		"queued":  hexutil.Uint(queue),
    
    	}
    }
    
    // Inspect retrieves the content of the transaction pool and flattens it into an
    // easily inspectable list.
    
    func (s *PublicTxPoolAPI) Inspect() map[string]map[string]map[string]string {
    	content := map[string]map[string]map[string]string{
    		"pending": make(map[string]map[string]string),
    		"queued":  make(map[string]map[string]string),
    
    	}
    	pending, queue := s.b.TxPoolContent()
    
    	// Define a formatter to flatten a transaction into a string
    	var format = func(tx *types.Transaction) string {
    		if to := tx.To(); to != nil {
    
    			return fmt.Sprintf("%s: %v wei + %v gas × %v wei", tx.To().Hex(), tx.Value(), tx.Gas(), tx.GasPrice())
    
    		return fmt.Sprintf("contract creation: %v wei + %v gas × %v wei", tx.Value(), tx.Gas(), tx.GasPrice())
    
    	}
    	// Flatten the pending transactions
    
    	for account, txs := range pending {
    		dump := make(map[string]string)
    
    		for _, tx := range txs {
    			dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
    
    		}
    		content["pending"][account.Hex()] = dump
    	}
    	// Flatten the queued transactions
    
    	for account, txs := range queue {
    		dump := make(map[string]string)
    
    		for _, tx := range txs {
    			dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
    
    		}
    		content["queued"][account.Hex()] = dump
    	}
    	return content
    }
    
    // PublicAccountAPI provides an API to access accounts managed by this node.
    // It offers only methods that can retrieve accounts.
    type PublicAccountAPI struct {
    	am *accounts.Manager
    }
    
    // NewPublicAccountAPI creates a new PublicAccountAPI.
    func NewPublicAccountAPI(am *accounts.Manager) *PublicAccountAPI {
    	return &PublicAccountAPI{am: am}
    }
    
    // Accounts returns the collection of accounts this node manages
    
    func (s *PublicAccountAPI) Accounts() []common.Address {
    
    	addresses := make([]common.Address, 0) // return [] instead of nil if empty
    
    	for _, wallet := range s.am.Wallets() {
    		for _, account := range wallet.Accounts() {
    			addresses = append(addresses, account.Address)
    		}
    	}
    	return addresses
    
    }
    
    // PrivateAccountAPI provides an API to access accounts managed by this node.
    // It offers methods to create, (un)lock en list accounts. Some methods accept
    // passwords and are therefore considered private by default.
    type PrivateAccountAPI struct {
    
    	am        *accounts.Manager
    	nonceLock *AddrLocker
    	b         Backend
    
    }
    
    // NewPrivateAccountAPI create a new PrivateAccountAPI.
    
    func NewPrivateAccountAPI(b Backend, nonceLock *AddrLocker) *PrivateAccountAPI {
    
    		am:        b.AccountManager(),
    		nonceLock: nonceLock,
    		b:         b,
    
    // listAccounts will return a list of addresses for accounts this node manages.
    
    func (s *PrivateAccountAPI) ListAccounts() []common.Address {
    
    	addresses := make([]common.Address, 0) // return [] instead of nil if empty
    
    	for _, wallet := range s.am.Wallets() {
    		for _, account := range wallet.Accounts() {
    			addresses = append(addresses, account.Address)
    		}
    
    // rawWallet is a JSON representation of an accounts.Wallet interface, with its
    // data contents extracted into plain fields.
    type rawWallet struct {
    	URL      string             `json:"url"`
    	Status   string             `json:"status"`
    
    	Failure  string             `json:"failure,omitempty"`
    	Accounts []accounts.Account `json:"accounts,omitempty"`
    
    }
    
    // ListWallets will return a list of wallets this node manages.
    func (s *PrivateAccountAPI) ListWallets() []rawWallet {
    
    	wallets := make([]rawWallet, 0) // return [] instead of nil if empty
    
    	for _, wallet := range s.am.Wallets() {
    
    		status, failure := wallet.Status()
    
    		raw := rawWallet{
    
    		}
    		if failure != nil {
    			raw.Failure = failure.Error()
    		}
    		wallets = append(wallets, raw)
    
    // OpenWallet initiates a hardware wallet opening procedure, establishing a USB
    // connection and attempting to authenticate via the provided passphrase. Note,
    // the method may return an extra challenge requiring a second open (e.g. the
    // Trezor PIN matrix challenge).
    func (s *PrivateAccountAPI) OpenWallet(url string, passphrase *string) error {
    	wallet, err := s.am.Wallet(url)
    	if err != nil {
    		return err
    	}
    	pass := ""
    	if passphrase != nil {
    		pass = *passphrase
    	}
    	return wallet.Open(pass)
    }
    
    
    // DeriveAccount requests a HD wallet to derive a new account, optionally pinning
    // it for later reuse.
    func (s *PrivateAccountAPI) DeriveAccount(url string, path string, pin *bool) (accounts.Account, error) {
    	wallet, err := s.am.Wallet(url)
    	if err != nil {
    		return accounts.Account{}, err
    	}
    
    	derivPath, err := accounts.ParseDerivationPath(path)
    	if err != nil {
    		return accounts.Account{}, err
    	}
    
    	return wallet.Derive(derivPath, *pin)
    
    // NewAccount will create a new account and returns the address for the new account.
    func (s *PrivateAccountAPI) NewAccount(password string) (common.Address, error) {
    
    	acc, err := fetchKeystore(s.am).NewAccount(password)
    
    		log.Info("Your new key was generated", "address", acc.Address)
    		log.Warn("Please backup your key file!", "path", acc.URL.Path)
    		log.Warn("Please remember your password!")
    
    		return acc.Address, nil
    	}
    	return common.Address{}, err
    }
    
    
    // fetchKeystore retrives the encrypted keystore from the account manager.
    func fetchKeystore(am *accounts.Manager) *keystore.KeyStore {
    
    	return am.Backends(keystore.KeyStoreType)[0].(*keystore.KeyStore)
    
    // ImportRawKey stores the given hex encoded ECDSA key into the key directory,
    // encrypting it with the passphrase.
    func (s *PrivateAccountAPI) ImportRawKey(privkey string, password string) (common.Address, error) {
    
    	key, err := crypto.HexToECDSA(privkey)
    
    	if err != nil {
    		return common.Address{}, err
    	}
    
    	acc, err := fetchKeystore(s.am).ImportECDSA(key, password)
    
    	return acc.Address, err
    }
    
    // UnlockAccount will unlock the account associated with the given address with
    // the given password for duration seconds. If duration is nil it will use a
    // default of 300 seconds. It returns an indication if the account was unlocked.
    
    func (s *PrivateAccountAPI) UnlockAccount(ctx context.Context, addr common.Address, password string, duration *uint64) (bool, error) {
    	// When the API is exposed by external RPC(http, ws etc), unless the user
    	// explicitly specifies to allow the insecure account unlocking, otherwise
    	// it is disabled.
    	if s.b.ExtRPCEnabled() && !s.b.AccountManager().Config().InsecureUnlockAllowed {
    		return false, errors.New("account unlock with HTTP access is forbidden")
    	}
    
    
    	const max = uint64(time.Duration(math.MaxInt64) / time.Second)
    
    	} else if *duration > max {
    		return false, errors.New("unlock duration too large")
    
    	} else {
    		d = time.Duration(*duration) * time.Second
    
    	err := fetchKeystore(s.am).TimedUnlock(accounts.Account{Address: addr}, password, d)
    
    	if err != nil {
    		log.Warn("Failed account unlock attempt", "address", addr, "err", err)
    	}
    
    }
    
    // LockAccount will lock the account associated with the given address when it's unlocked.
    func (s *PrivateAccountAPI) LockAccount(addr common.Address) bool {
    
    	return fetchKeystore(s.am).Lock(addr) == nil
    
    // signTransaction sets defaults and signs the given transaction
    
    // NOTE: the caller needs to ensure that the nonceLock is held, if applicable,
    // and release it after the transaction has been submitted to the tx pool
    
    func (s *PrivateAccountAPI) signTransaction(ctx context.Context, args *SendTxArgs, passwd string) (*types.Transaction, error) {
    
    	// Look up the wallet containing the requested signer
    	account := accounts.Account{Address: args.From}
    	wallet, err := s.am.Find(account)
    	if err != nil {
    
    	}
    	// Set some sanity defaults and terminate on failure
    	if err := args.setDefaults(ctx, s.b); err != nil {
    
    	// Assemble the transaction and sign with the wallet
    
    	tx := args.toTransaction()
    
    	return wallet.SignTxWithPassphrase(account, passwd, tx, s.b.ChainConfig().ChainID)
    
    }
    
    // SendTransaction will create a transaction from the given arguments and
    // tries to sign it with the key associated with args.To. If the given passwd isn't
    // able to decrypt the key it fails.
    func (s *PrivateAccountAPI) SendTransaction(ctx context.Context, args SendTxArgs, passwd string) (common.Hash, error) {
    	if args.Nonce == nil {
    		// Hold the addresse's mutex around signing to prevent concurrent assignment of
    		// the same nonce to multiple accounts.
    		s.nonceLock.LockAddr(args.From)
    		defer s.nonceLock.UnlockAddr(args.From)
    	}
    
    	signed, err := s.signTransaction(ctx, &args, passwd)
    
    		log.Warn("Failed transaction send attempt", "from", args.From, "to", args.To, "value", args.Value.ToInt(), "err", err)
    
    	return SubmitTransaction(ctx, s.b, signed)
    
    // SignTransaction will create a transaction from the given arguments and
    // tries to sign it with the key associated with args.To. If the given passwd isn't
    // able to decrypt the key it fails. The transaction is returned in RLP-form, not broadcast
    // to other nodes
    func (s *PrivateAccountAPI) SignTransaction(ctx context.Context, args SendTxArgs, passwd string) (*SignTransactionResult, error) {
    	// No need to obtain the noncelock mutex, since we won't be sending this
    	// tx into the transaction pool, but right back to the user
    	if args.Gas == nil {
    		return nil, fmt.Errorf("gas not specified")
    	}
    	if args.GasPrice == nil {
    		return nil, fmt.Errorf("gasPrice not specified")
    	}
    	if args.Nonce == nil {
    		return nil, fmt.Errorf("nonce not specified")
    	}
    
    	signed, err := s.signTransaction(ctx, &args, passwd)
    
    		log.Warn("Failed transaction sign attempt", "from", args.From, "to", args.To, "value", args.Value.ToInt(), "err", err)
    
    		return nil, err
    	}
    	data, err := rlp.EncodeToBytes(signed)
    	if err != nil {
    		return nil, err
    	}
    	return &SignTransactionResult{data, signed}, nil
    }
    
    
    // Sign calculates an Ethereum ECDSA signature for:
    // keccack256("\x19Ethereum Signed Message:\n" + len(message) + message))
    //
    
    // Note, the produced signature conforms to the secp256k1 curve R, S and V values,
    // where the V value will be 27 or 28 for legacy reasons.
    //
    
    // The key used to calculate the signature is decrypted with the given password.
    //
    // https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_sign
    
    func (s *PrivateAccountAPI) Sign(ctx context.Context, data hexutil.Bytes, addr common.Address, passwd string) (hexutil.Bytes, error) {
    
    	// Look up the wallet containing the requested signer
    	account := accounts.Account{Address: addr}
    
    	wallet, err := s.b.AccountManager().Find(account)
    	if err != nil {
    		return nil, err
    	}
    	// Assemble sign the data with the wallet
    
    	signature, err := wallet.SignTextWithPassphrase(account, passwd, data)
    
    		log.Warn("Failed data sign attempt", "address", addr, "err", err)
    
    	signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
    
    }
    
    // EcRecover returns the address for the account that was used to create the signature.
    // Note, this function is compatible with eth_sign and personal_sign. As such it recovers
    // the address of:
    // hash = keccak256("\x19Ethereum Signed Message:\n"${message length}${message})
    // addr = ecrecover(hash, signature)
    //
    
    // Note, the signature must conform to the secp256k1 curve R, S and V values, where
    
    // the V value must be 27 or 28 for legacy reasons.
    
    // https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover
    
    func (s *PrivateAccountAPI) EcRecover(ctx context.Context, data, sig hexutil.Bytes) (common.Address, error) {
    
    	if len(sig) != 65 {
    		return common.Address{}, fmt.Errorf("signature must be 65 bytes long")
    	}
    
    	if sig[64] != 27 && sig[64] != 28 {
    		return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)")
    
    	sig[64] -= 27 // Transform yellow paper V from 27/28 to 0/1
    
    	rpk, err := crypto.SigToPub(accounts.TextHash(data), sig)
    
    	if err != nil {
    		return common.Address{}, err
    	}
    
    	return crypto.PubkeyToAddress(*rpk), nil
    
    // SignAndSendTransaction was renamed to SendTransaction. This method is deprecated
    // and will be removed in the future. It primary goal is to give clients time to update.
    func (s *PrivateAccountAPI) SignAndSendTransaction(ctx context.Context, args SendTxArgs, passwd string) (common.Hash, error) {
    	return s.SendTransaction(ctx, args, passwd)
    }
    
    
    // InitializeWallet initializes a new wallet at the provided URL, by generating and returning a new private key.
    
    func (s *PrivateAccountAPI) InitializeWallet(ctx context.Context, url string) (string, error) {
    	wallet, err := s.am.Wallet(url)
    	if err != nil {
    		return "", err
    	}
    
    	entropy, err := bip39.NewEntropy(256)
    	if err != nil {
    		return "", err
    	}
    
    	mnemonic, err := bip39.NewMnemonic(entropy)
    	if err != nil {
    		return "", err
    	}
    
    	seed := bip39.NewSeed(mnemonic, "")
    
    	switch wallet := wallet.(type) {
    	case *scwallet.Wallet:
    		return mnemonic, wallet.Initialize(seed)
    	default:
    		return "", fmt.Errorf("Specified wallet does not support initialization")
    	}
    }
    
    
    // Unpair deletes a pairing between wallet and geth.
    
    func (s *PrivateAccountAPI) Unpair(ctx context.Context, url string, pin string) error {
    	wallet, err := s.am.Wallet(url)
    	if err != nil {
    		return err
    	}
    
    	switch wallet := wallet.(type) {
    	case *scwallet.Wallet:
    		return wallet.Unpair([]byte(pin))
    	default:
    		return fmt.Errorf("Specified wallet does not support pairing")
    	}
    }
    
    
    // PublicBlockChainAPI provides an API to access the Ethereum blockchain.
    // It offers only methods that operate on public data that is freely available to anyone.
    type PublicBlockChainAPI struct {
    
    // NewPublicBlockChainAPI creates a new Ethereum blockchain API.
    
    func NewPublicBlockChainAPI(b Backend) *PublicBlockChainAPI {
    
    	return &PublicBlockChainAPI{b}
    
    // ChainId returns the chainID value for transaction replay protection.
    func (s *PublicBlockChainAPI) ChainId() *hexutil.Big {
    	return (*hexutil.Big)(s.b.ChainConfig().ChainID)
    }
    
    
    // BlockNumber returns the block number of the chain head.
    
    func (s *PublicBlockChainAPI) BlockNumber() hexutil.Uint64 {
    
    	header, _ := s.b.HeaderByNumber(context.Background(), rpc.LatestBlockNumber) // latest header should always be available
    
    	return hexutil.Uint64(header.Number.Uint64())
    
    }
    
    // GetBalance returns the amount of wei for the given address in the state of the
    // given block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta
    // block numbers are also allowed.
    
    func (s *PublicBlockChainAPI) GetBalance(ctx context.Context, address common.Address, blockNr rpc.BlockNumber) (*hexutil.Big, error) {
    
    	state, _, err := s.b.StateAndHeaderByNumber(ctx, blockNr)
    
    	if state == nil || err != nil {
    		return nil, err
    	}
    
    	return (*hexutil.Big)(state.GetBalance(address)), state.Error()
    
    // Result structs for GetProof
    type AccountResult struct {
    	Address      common.Address  `json:"address"`
    	AccountProof []string        `json:"accountProof"`
    	Balance      *hexutil.Big    `json:"balance"`
    	CodeHash     common.Hash     `json:"codeHash"`
    	Nonce        hexutil.Uint64  `json:"nonce"`
    	StorageHash  common.Hash     `json:"storageHash"`
    	StorageProof []StorageResult `json:"storageProof"`
    }
    type StorageResult struct {
    	Key   string       `json:"key"`
    	Value *hexutil.Big `json:"value"`
    	Proof []string     `json:"proof"`
    }
    
    // GetProof returns the Merkle-proof for a given account and optionally some storage keys.
    func (s *PublicBlockChainAPI) GetProof(ctx context.Context, address common.Address, storageKeys []string, blockNr rpc.BlockNumber) (*AccountResult, error) {
    	state, _, err := s.b.StateAndHeaderByNumber(ctx, blockNr)
    	if state == nil || err != nil {
    		return nil, err
    	}
    
    	storageTrie := state.StorageTrie(address)
    	storageHash := types.EmptyRootHash
    	codeHash := state.GetCodeHash(address)
    	storageProof := make([]StorageResult, len(storageKeys))
    
    	// if we have a storageTrie, (which means the account exists), we can update the storagehash
    	if storageTrie != nil {
    		storageHash = storageTrie.Hash()
    	} else {
    		// no storageTrie means the account does not exist, so the codeHash is the hash of an empty bytearray.
    		codeHash = crypto.Keccak256Hash(nil)
    	}
    
    	// create the proof for the storageKeys
    	for i, key := range storageKeys {
    		if storageTrie != nil {
    			proof, storageError := state.GetStorageProof(address, common.HexToHash(key))
    			if storageError != nil {
    				return nil, storageError
    			}
    			storageProof[i] = StorageResult{key, (*hexutil.Big)(state.GetState(address, common.HexToHash(key)).Big()), common.ToHexArray(proof)}
    		} else {
    			storageProof[i] = StorageResult{key, &hexutil.Big{}, []string{}}
    		}
    	}
    
    	// create the accountProof
    	accountProof, proofErr := state.GetProof(address)
    	if proofErr != nil {
    		return nil, proofErr
    	}
    
    	return &AccountResult{
    		Address:      address,
    		AccountProof: common.ToHexArray(accountProof),
    		Balance:      (*hexutil.Big)(state.GetBalance(address)),
    		CodeHash:     codeHash,
    		Nonce:        hexutil.Uint64(state.GetNonce(address)),
    		StorageHash:  storageHash,
    		StorageProof: storageProof,
    	}, state.Error()
    }
    
    
    // GetBlockByNumber returns the requested block. When blockNr is -1 the chain head is returned. When fullTx is true all
    // transactions in the block are returned in full detail, otherwise only the transaction hash is returned.
    func (s *PublicBlockChainAPI) GetBlockByNumber(ctx context.Context, blockNr rpc.BlockNumber, fullTx bool) (map[string]interface{}, error) {
    	block, err := s.b.BlockByNumber(ctx, blockNr)
    	if block != nil {
    		response, err := s.rpcOutputBlock(block, true, fullTx)
    		if err == nil && blockNr == rpc.PendingBlockNumber {
    			// Pending blocks need to nil out a few fields
    
    			for _, field := range []string{"hash", "nonce", "miner"} {
    
    				response[field] = nil
    			}
    		}
    		return response, err
    	}
    	return nil, err
    }
    
    // GetBlockByHash returns the requested block. When fullTx is true all transactions in the block are returned in full
    // detail, otherwise only the transaction hash is returned.
    func (s *PublicBlockChainAPI) GetBlockByHash(ctx context.Context, blockHash common.Hash, fullTx bool) (map[string]interface{}, error) {
    	block, err := s.b.GetBlock(ctx, blockHash)
    	if block != nil {
    		return s.rpcOutputBlock(block, true, fullTx)
    	}
    	return nil, err
    }
    
    // GetUncleByBlockNumberAndIndex returns the uncle block for the given block hash and index. When fullTx is true
    // all transactions in the block are returned in full detail, otherwise only the transaction hash is returned.
    
    func (s *PublicBlockChainAPI) GetUncleByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) (map[string]interface{}, error) {
    
    	block, err := s.b.BlockByNumber(ctx, blockNr)
    	if block != nil {
    		uncles := block.Uncles()
    
    		if index >= hexutil.Uint(len(uncles)) {
    
    			log.Debug("Requested uncle not found", "number", blockNr, "hash", block.Hash(), "index", index)
    
    		block = types.NewBlockWithHeader(uncles[index])
    
    		return s.rpcOutputBlock(block, false, false)
    	}
    	return nil, err
    }
    
    // GetUncleByBlockHashAndIndex returns the uncle block for the given block hash and index. When fullTx is true
    // all transactions in the block are returned in full detail, otherwise only the transaction hash is returned.
    
    func (s *PublicBlockChainAPI) GetUncleByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) (map[string]interface{}, error) {
    
    	block, err := s.b.GetBlock(ctx, blockHash)
    	if block != nil {
    		uncles := block.Uncles()
    
    		if index >= hexutil.Uint(len(uncles)) {
    
    			log.Debug("Requested uncle not found", "number", block.Number(), "hash", blockHash, "index", index)
    
    		block = types.NewBlockWithHeader(uncles[index])
    
    		return s.rpcOutputBlock(block, false, false)
    	}
    	return nil, err
    }
    
    // GetUncleCountByBlockNumber returns number of uncles in the block for the given block number
    
    func (s *PublicBlockChainAPI) GetUncleCountByBlockNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
    
    	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
    
    		n := hexutil.Uint(len(block.Uncles()))
    		return &n
    
    	}
    	return nil
    }
    
    // GetUncleCountByBlockHash returns number of uncles in the block for the given block hash
    
    func (s *PublicBlockChainAPI) GetUncleCountByBlockHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
    
    	if block, _ := s.b.GetBlock(ctx, blockHash); block != nil {
    
    		n := hexutil.Uint(len(block.Uncles()))
    		return &n
    
    	}
    	return nil
    }
    
    // GetCode returns the code stored at the given address in the state for the given block number.
    
    func (s *PublicBlockChainAPI) GetCode(ctx context.Context, address common.Address, blockNr rpc.BlockNumber) (hexutil.Bytes, error) {
    
    	state, _, err := s.b.StateAndHeaderByNumber(ctx, blockNr)
    
    	code := state.GetCode(address)
    	return code, state.Error()
    
    }
    
    // GetStorageAt returns the storage from the state at the given address, key and
    // block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta block
    // numbers are also allowed.
    
    func (s *PublicBlockChainAPI) GetStorageAt(ctx context.Context, address common.Address, key string, blockNr rpc.BlockNumber) (hexutil.Bytes, error) {
    
    	state, _, err := s.b.StateAndHeaderByNumber(ctx, blockNr)
    
    	res := state.GetState(address, common.HexToHash(key))
    	return res[:], state.Error()
    
    }
    
    // CallArgs represents the arguments for a call.
    type CallArgs struct {
    
    	From     *common.Address `json:"from"`
    
    	Gas      *hexutil.Uint64 `json:"gas"`
    	GasPrice *hexutil.Big    `json:"gasPrice"`
    	Value    *hexutil.Big    `json:"value"`
    	Data     *hexutil.Bytes  `json:"data"`
    
    func DoCall(ctx context.Context, b Backend, args CallArgs, blockNr rpc.BlockNumber, vmCfg vm.Config, timeout time.Duration, globalGasCap *big.Int) ([]byte, uint64, bool, error) {
    
    	defer func(start time.Time) { log.Debug("Executing EVM call finished", "runtime", time.Since(start)) }(time.Now())
    
    	state, header, err := b.StateAndHeaderByNumber(ctx, blockNr)
    
    		return nil, 0, false, err
    
    	// Set sender address or use a default if none specified
    
    	var addr common.Address
    	if args.From == nil {
    		if wallets := b.AccountManager().Wallets(); len(wallets) > 0 {
    
    			if accounts := wallets[0].Accounts(); len(accounts) > 0 {
    				addr = accounts[0].Address
    			}
    
    	} else {
    		addr = *args.From
    
    	// Set default gas & gas price if none were set
    
    	gas := uint64(math.MaxUint64 / 2)
    	if args.Gas != nil {
    		gas = uint64(*args.Gas)
    
    	if globalGasCap != nil && globalGasCap.Uint64() < gas {
    		log.Warn("Caller gas above allowance, capping", "requested", gas, "cap", globalGasCap)
    		gas = globalGasCap.Uint64()
    	}
    
    	gasPrice := new(big.Int).SetUint64(defaultGasPrice)
    	if args.GasPrice != nil {
    		gasPrice = args.GasPrice.ToInt()
    	}
    
    	value := new(big.Int)
    	if args.Value != nil {
    		value = args.Value.ToInt()
    	}
    
    	var data []byte
    	if args.Data != nil {
    		data = []byte(*args.Data)
    
    
    	// Create new call message
    
    	msg := types.NewMessage(addr, args.To, 0, value, gas, gasPrice, data, false)
    
    	// Setup context so it may be cancelled the call has completed
    	// or, in case of unmetered gas, setup a context with a timeout.
    	var cancel context.CancelFunc
    
    	if timeout > 0 {
    		ctx, cancel = context.WithTimeout(ctx, timeout)
    
    	} else {
    		ctx, cancel = context.WithCancel(ctx)
    
    	// Make sure the context is cancelled when the call has completed
    	// this makes sure resources are cleaned up.
    
    
    	// Get a new instance of the EVM.
    
    	evm, vmError, err := b.GetEVM(ctx, msg, state, header)
    
    		return nil, 0, false, err
    
    	}
    	// Wait for the context to be done and cancel the evm. Even if the
    	// EVM has finished, cancelling may be done (repeatedly)
    	go func() {
    
    		<-ctx.Done()
    		evm.Cancel()
    
    	}()
    
    	// Setup the gas pool (also for unmetered requests)
    	// and apply the message.
    
    	gp := new(core.GasPool).AddGas(math.MaxUint64)
    
    	res, gas, failed, err := core.ApplyMessage(evm, msg, gp)
    
    	if err := vmError(); err != nil {
    
    		return nil, 0, false, err
    
    	// If the timer caused an abort, return an appropriate error message
    	if evm.Cancelled() {
    		return nil, 0, false, fmt.Errorf("execution aborted (timeout = %v)", timeout)
    	}
    
    }
    
    // Call executes the given transaction on the state for the given block number.
    
    // It doesn't make and changes in the state/blockchain and is useful to execute and retrieve values.
    
    func (s *PublicBlockChainAPI) Call(ctx context.Context, args CallArgs, blockNr rpc.BlockNumber) (hexutil.Bytes, error) {
    
    	result, _, _, err := DoCall(ctx, s.b, args, blockNr, vm.Config{}, 5*time.Second, s.b.RPCGasCap())
    
    	return (hexutil.Bytes)(result), err
    
    func DoEstimateGas(ctx context.Context, b Backend, args CallArgs, blockNr rpc.BlockNumber, gasCap *big.Int) (hexutil.Uint64, error) {
    
    	// Binary search the gas requirement, as it may be higher than the amount used
    
    		lo  uint64 = params.TxGas - 1
    		hi  uint64
    		cap uint64
    
    	if args.Gas != nil && uint64(*args.Gas) >= params.TxGas {
    		hi = uint64(*args.Gas)
    
    		// Retrieve the block to act as the gas ceiling
    		block, err := b.BlockByNumber(ctx, blockNr)
    
    		hi = block.GasLimit()
    
    	if gasCap != nil && hi > gasCap.Uint64() {
    		log.Warn("Caller gas above allowance, capping", "requested", hi, "cap", gasCap)
    		hi = gasCap.Uint64()
    	}
    
    	// Create a helper to check if a gas allowance results in an executable transaction
    	executable := func(gas uint64) bool {
    
    		args.Gas = (*hexutil.Uint64)(&gas)
    
    		_, _, failed, err := DoCall(ctx, b, args, rpc.PendingBlockNumber, vm.Config{}, 0, gasCap)
    
    			return false
    		}
    		return true
    	}
    	// Execute the binary search and hone in on an executable gas limit
    	for lo+1 < hi {
    		mid := (hi + lo) / 2
    		if !executable(mid) {
    
    		} else {
    			hi = mid
    		}
    	}
    	// Reject the transaction as invalid if it still fails at the highest allowance
    	if hi == cap {
    		if !executable(hi) {
    
    			return 0, fmt.Errorf("gas required exceeds allowance (%d) or always failing transaction", cap)
    
    	return hexutil.Uint64(hi), nil
    
    // EstimateGas returns an estimate of the amount of gas needed to execute the
    // given transaction against the current pending block.
    func (s *PublicBlockChainAPI) EstimateGas(ctx context.Context, args CallArgs) (hexutil.Uint64, error) {
    
    	return DoEstimateGas(ctx, s.b, args, rpc.PendingBlockNumber, s.b.RPCGasCap())
    
    // ExecutionResult groups all structured logs emitted by the EVM
    
    // while replaying a transaction in debug mode as well as transaction
    // execution status, the amount of gas used and the return value
    
    	Gas         uint64         `json:"gas"`
    
    	ReturnValue string         `json:"returnValue"`
    	StructLogs  []StructLogRes `json:"structLogs"`
    }
    
    // StructLogRes stores a structured log emitted by the EVM while replaying a
    // transaction in debug mode
    type StructLogRes struct {
    
    	Pc      uint64             `json:"pc"`
    	Op      string             `json:"op"`
    	Gas     uint64             `json:"gas"`
    	GasCost uint64             `json:"gasCost"`
    	Depth   int                `json:"depth"`
    	Error   error              `json:"error,omitempty"`
    	Stack   *[]string          `json:"stack,omitempty"`
    	Memory  *[]string          `json:"memory,omitempty"`
    	Storage *map[string]string `json:"storage,omitempty"`
    
    // FormatLogs formats EVM returned structured logs for json output
    
    func FormatLogs(logs []vm.StructLog) []StructLogRes {
    	formatted := make([]StructLogRes, len(logs))
    	for index, trace := range logs {
    		formatted[index] = StructLogRes{
    
    			Pc:      trace.Pc,
    			Op:      trace.Op.String(),
    			Gas:     trace.Gas,
    			GasCost: trace.GasCost,
    			Depth:   trace.Depth,
    			Error:   trace.Err,
    		}
    
    		if trace.Stack != nil {
    			stack := make([]string, len(trace.Stack))
    			for i, stackValue := range trace.Stack {
    				stack[i] = fmt.Sprintf("%x", math.PaddedBigBytes(stackValue, 32))
    			}
    			formatted[index].Stack = &stack
    
    		if trace.Memory != nil {
    			memory := make([]string, 0, (len(trace.Memory)+31)/32)
    			for i := 0; i+32 <= len(trace.Memory); i += 32 {
    				memory = append(memory, fmt.Sprintf("%x", trace.Memory[i:i+32]))
    			}
    			formatted[index].Memory = &memory
    
    		if trace.Storage != nil {
    			storage := make(map[string]string)
    			for i, storageValue := range trace.Storage {
    				storage[fmt.Sprintf("%x", i)] = fmt.Sprintf("%x", storageValue)
    			}
    			formatted[index].Storage = &storage
    
    // RPCMarshalBlock converts the given block to the RPC output which depends on fullTx. If inclTx is true transactions are
    
    // returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain
    // transaction hashes.
    
    func RPCMarshalBlock(b *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) {
    
    	head := b.Header() // copies the header once
    
    	fields := map[string]interface{}{
    
    		"number":           (*hexutil.Big)(head.Number),
    
    		"parentHash":       head.ParentHash,
    		"nonce":            head.Nonce,
    		"mixHash":          head.MixDigest,
    		"sha3Uncles":       head.UncleHash,
    		"logsBloom":        head.Bloom,
    		"stateRoot":        head.Root,
    		"miner":            head.Coinbase,
    
    		"difficulty":       (*hexutil.Big)(head.Difficulty),
    
    		"extraData":        hexutil.Bytes(head.Extra),
    
    		"gasLimit":         hexutil.Uint64(head.GasLimit),
    		"gasUsed":          hexutil.Uint64(head.GasUsed),
    
    		"timestamp":        hexutil.Uint64(head.Time),
    
    		"transactionsRoot": head.TxHash,
    
    		"receiptsRoot":     head.ReceiptHash,
    
    	}
    
    	if inclTx {
    		formatTx := func(tx *types.Transaction) (interface{}, error) {
    			return tx.Hash(), nil
    		}
    		if fullTx {
    			formatTx = func(tx *types.Transaction) (interface{}, error) {
    
    				return newRPCTransactionFromBlockHash(b, tx.Hash()), nil
    
    			}
    		}
    		txs := b.Transactions()
    		transactions := make([]interface{}, len(txs))
    		var err error
    
    			if transactions[i], err = formatTx(tx); err != nil {
    				return nil, err
    			}
    		}
    		fields["transactions"] = transactions
    	}
    
    	uncles := b.Uncles()
    	uncleHashes := make([]common.Hash, len(uncles))
    	for i, uncle := range uncles {
    		uncleHashes[i] = uncle.Hash()
    	}
    	fields["uncles"] = uncleHashes
    
    	return fields, nil
    }
    
    
    // rpcOutputBlock uses the generalized output filler, then adds the total difficulty field, which requires
    // a `PublicBlockchainAPI`.
    func (s *PublicBlockChainAPI) rpcOutputBlock(b *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) {
    	fields, err := RPCMarshalBlock(b, inclTx, fullTx)
    	if err != nil {
    		return nil, err
    	}
    	fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(b.Hash()))
    	return fields, err