good morning!!!!

Skip to content
Snippets Groups Projects
Select Git revision
  • c646d287f84e50b9c4bd9cabdfa7773035f508b7
  • master default protected
  • v0.2.16-candidate
  • shivam/rpcAddBorTx
  • default-cli-config
  • shivam/minerRecommitFix
  • vcastellm/pos-296-bump-go-version-in-bor-and-heimdall
  • shivam/ethstats-backend-fix
  • v0.2.16-beta1-candidate
  • v0.2.15-beta3-candidate
  • shivam/newCli-IPC
  • v0.3.0-dev
  • checkpoint-whitelist-master
  • shivam/codecov
  • jdkanani/fix-typo-log
  • shivam/hardcoded-spans-v0.2.14
  • shivam/hardcoded-spans
  • shivam/fast-state-sync
  • shivam/fast-state-sync-master
  • gethv1.10.15-merge
  • fix-txpool-2
  • v0.2.14-tmp-span-hotfix
  • v0.2.15-beta2
  • v0.2.15-beta1
  • v0.3.0-beta3
  • v0.3.0-beta2
  • v0.3.0-beta1
  • v0.2.14
  • v0.2.13
  • v0.2.13-beta2
  • v0.2.13-beta1
  • v0.2.12
  • v0.2.12-beta3
  • v0.2.12-beta1
  • v0.2.12-beta2
  • v0.2.11
  • v0.2.10
  • v0.2.10-beta2
  • v0.2.9
  • v0.2.9-beta1
  • v0.2.8
41 results

handler.go

Blame
  • Forked from github / maticnetwork / bor
    Source project has a limited visibility.
    Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    trie.go 14.78 KiB
    // Copyright 2014 The go-ethereum Authors
    // This file is part of the go-ethereum library.
    //
    // The go-ethereum library is free software: you can redistribute it and/or modify
    // it under the terms of the GNU Lesser General Public License as published by
    // the Free Software Foundation, either version 3 of the License, or
    // (at your option) any later version.
    //
    // The go-ethereum library is distributed in the hope that it will be useful,
    // but WITHOUT ANY WARRANTY; without even the implied warranty of
    // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    // GNU Lesser General Public License for more details.
    //
    // You should have received a copy of the GNU Lesser General Public License
    // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    
    // Package trie implements Merkle Patricia Tries.
    package trie
    
    import (
    	"bytes"
    	"fmt"
    
    	"github.com/ethereum/go-ethereum/common"
    	"github.com/ethereum/go-ethereum/crypto/sha3"
    	"github.com/ethereum/go-ethereum/logger"
    	"github.com/ethereum/go-ethereum/logger/glog"
    )
    
    var (
    	// This is the known root hash of an empty trie.
    	emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
    	// This is the known hash of an empty state trie entry.
    	emptyState common.Hash
    )
    
    func init() {
    	sha3.NewKeccak256().Sum(emptyState[:0])
    }
    
    // Database must be implemented by backing stores for the trie.
    type Database interface {
    	DatabaseWriter
    	// Get returns the value for key from the database.
    	Get(key []byte) (value []byte, err error)
    }
    
    // DatabaseWriter wraps the Put method of a backing store for the trie.
    type DatabaseWriter interface {
    	// Put stores the mapping key->value in the database.
    	// Implementations must not hold onto the value bytes, the trie
    	// will reuse the slice across calls to Put.
    	Put(key, value []byte) error
    }
    
    // Trie is a Merkle Patricia Trie.
    // The zero value is an empty trie with no database.
    // Use New to create a trie that sits on top of a database.
    //
    // Trie is not safe for concurrent use.
    type Trie struct {
    	root         node
    	db           Database
    	originalRoot common.Hash
    
    	// Cache generation values.
    	// cachegen increase by one with each commit operation.
    	// new nodes are tagged with the current generation and unloaded
    	// when their generation is older than than cachegen-cachelimit.
    	cachegen, cachelimit uint16
    }
    
    // SetCacheLimit sets the number of 'cache generations' to keep.
    // A cache generations is created by a call to Commit.
    func (t *Trie) SetCacheLimit(l uint16) {
    	t.cachelimit = l
    }
    
    // newFlag returns the cache flag value for a newly created node.
    func (t *Trie) newFlag() nodeFlag {
    	return nodeFlag{dirty: true, gen: t.cachegen}
    }
    
    // New creates a trie with an existing root node from db.
    //
    // If root is the zero hash or the sha3 hash of an empty string, the
    // trie is initially empty and does not require a database. Otherwise,
    // New will panic if db is nil and returns a MissingNodeError if root does
    // not exist in the database. Accessing the trie loads nodes from db on demand.
    func New(root common.Hash, db Database) (*Trie, error) {
    	trie := &Trie{db: db, originalRoot: root}
    	if (root != common.Hash{}) && root != emptyRoot {
    		if db == nil {
    			panic("trie.New: cannot use existing root without a database")
    		}
    		rootnode, err := trie.resolveHash(root[:], nil, nil)
    		if err != nil {
    			return nil, err
    		}
    		trie.root = rootnode
    	}
    	return trie, nil
    }
    
    // Iterator returns an iterator over all mappings in the trie.
    func (t *Trie) Iterator() *Iterator {
    	return NewIterator(t)
    }
    
    // Get returns the value for key stored in the trie.
    // The value bytes must not be modified by the caller.
    func (t *Trie) Get(key []byte) []byte {
    	res, err := t.TryGet(key)
    	if err != nil && glog.V(logger.Error) {
    		glog.Errorf("Unhandled trie error: %v", err)
    	}
    	return res
    }
    
    // TryGet returns the value for key stored in the trie.
    // The value bytes must not be modified by the caller.
    // If a node was not found in the database, a MissingNodeError is returned.
    func (t *Trie) TryGet(key []byte) ([]byte, error) {
    	key = compactHexDecode(key)
    	value, newroot, didResolve, err := t.tryGet(t.root, key, 0)
    	if err == nil && didResolve {
    		t.root = newroot
    	}
    	return value, err
    }
    
    func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) {
    	switch n := (origNode).(type) {
    	case nil:
    		return nil, nil, false, nil
    	case valueNode:
    		return n, n, false, nil
    	case *shortNode:
    		if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) {
    			// key not found in trie
    			return nil, n, false, nil
    		}
    		value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key))
    		if err == nil && didResolve {
    			n = n.copy()
    			n.Val = newnode
    		}
    		return value, n, didResolve, err
    	case *fullNode:
    		value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1)
    		if err == nil && didResolve {
    			n = n.copy()
    			n.Children[key[pos]] = newnode
    
    		}
    		return value, n, didResolve, err
    	case hashNode:
    		child, err := t.resolveHash(n, key[:pos], key[pos:])
    		if err != nil {
    			return nil, n, true, err
    		}
    		value, newnode, _, err := t.tryGet(child, key, pos)
    		return value, newnode, true, err
    	default:
    		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
    	}
    }
    
    // Update associates key with value in the trie. Subsequent calls to
    // Get will return value. If value has length zero, any existing value
    // is deleted from the trie and calls to Get will return nil.
    //
    // The value bytes must not be modified by the caller while they are
    // stored in the trie.
    func (t *Trie) Update(key, value []byte) {
    	if err := t.TryUpdate(key, value); err != nil && glog.V(logger.Error) {
    		glog.Errorf("Unhandled trie error: %v", err)
    	}
    }
    
    // TryUpdate associates key with value in the trie. Subsequent calls to
    // Get will return value. If value has length zero, any existing value
    // is deleted from the trie and calls to Get will return nil.
    //
    // The value bytes must not be modified by the caller while they are
    // stored in the trie.
    //
    // If a node was not found in the database, a MissingNodeError is returned.
    func (t *Trie) TryUpdate(key, value []byte) error {
    	k := compactHexDecode(key)
    	if len(value) != 0 {
    		_, n, err := t.insert(t.root, nil, k, valueNode(value))
    		if err != nil {
    			return err
    		}
    		t.root = n
    	} else {
    		_, n, err := t.delete(t.root, nil, k)
    		if err != nil {
    			return err
    		}
    		t.root = n
    	}
    	return nil
    }
    
    func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) {
    	if len(key) == 0 {
    		if v, ok := n.(valueNode); ok {
    			return !bytes.Equal(v, value.(valueNode)), value, nil
    		}
    		return true, value, nil
    	}
    	switch n := n.(type) {
    	case *shortNode:
    		matchlen := prefixLen(key, n.Key)
    		// If the whole key matches, keep this short node as is
    		// and only update the value.
    		if matchlen == len(n.Key) {
    			dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value)
    			if !dirty || err != nil {
    				return false, n, err
    			}
    			return true, &shortNode{n.Key, nn, t.newFlag()}, nil
    		}
    		// Otherwise branch out at the index where they differ.
    		branch := &fullNode{flags: t.newFlag()}
    		var err error
    		_, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val)
    		if err != nil {
    			return false, nil, err
    		}
    		_, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value)
    		if err != nil {
    			return false, nil, err
    		}
    		// Replace this shortNode with the branch if it occurs at index 0.
    		if matchlen == 0 {
    			return true, branch, nil
    		}
    		// Otherwise, replace it with a short node leading up to the branch.
    		return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil
    
    	case *fullNode:
    		dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value)
    		if !dirty || err != nil {
    			return false, n, err
    		}
    		n = n.copy()
    		n.Children[key[0]], n.flags.hash, n.flags.dirty = nn, nil, true
    		return true, n, nil
    
    	case nil:
    		return true, &shortNode{key, value, t.newFlag()}, nil
    
    	case hashNode:
    		// We've hit a part of the trie that isn't loaded yet. Load
    		// the node and insert into it. This leaves all child nodes on
    		// the path to the value in the trie.
    		rn, err := t.resolveHash(n, prefix, key)
    		if err != nil {
    			return false, nil, err
    		}
    		dirty, nn, err := t.insert(rn, prefix, key, value)
    		if !dirty || err != nil {
    			return false, rn, err
    		}
    		return true, nn, nil
    
    	default:
    		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
    	}
    }
    
    // Delete removes any existing value for key from the trie.
    func (t *Trie) Delete(key []byte) {
    	if err := t.TryDelete(key); err != nil && glog.V(logger.Error) {
    		glog.Errorf("Unhandled trie error: %v", err)
    	}
    }
    
    // TryDelete removes any existing value for key from the trie.
    // If a node was not found in the database, a MissingNodeError is returned.
    func (t *Trie) TryDelete(key []byte) error {
    	k := compactHexDecode(key)
    	_, n, err := t.delete(t.root, nil, k)
    	if err != nil {
    		return err
    	}
    	t.root = n
    	return nil
    }
    
    // delete returns the new root of the trie with key deleted.
    // It reduces the trie to minimal form by simplifying
    // nodes on the way up after deleting recursively.
    func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) {
    	switch n := n.(type) {
    	case *shortNode:
    		matchlen := prefixLen(key, n.Key)
    		if matchlen < len(n.Key) {
    			return false, n, nil // don't replace n on mismatch
    		}
    		if matchlen == len(key) {
    			return true, nil, nil // remove n entirely for whole matches
    		}
    		// The key is longer than n.Key. Remove the remaining suffix
    		// from the subtrie. Child can never be nil here since the
    		// subtrie must contain at least two other values with keys
    		// longer than n.Key.
    		dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):])
    		if !dirty || err != nil {
    			return false, n, err
    		}
    		switch child := child.(type) {
    		case *shortNode:
    			// Deleting from the subtrie reduced it to another
    			// short node. Merge the nodes to avoid creating a
    			// shortNode{..., shortNode{...}}. Use concat (which
    			// always creates a new slice) instead of append to
    			// avoid modifying n.Key since it might be shared with
    			// other nodes.
    			return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil
    		default:
    			return true, &shortNode{n.Key, child, t.newFlag()}, nil
    		}
    
    	case *fullNode:
    		dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:])
    		if !dirty || err != nil {
    			return false, n, err
    		}
    		n = n.copy()
    		n.Children[key[0]], n.flags.hash, n.flags.dirty = nn, nil, true
    
    		// Check how many non-nil entries are left after deleting and
    		// reduce the full node to a short node if only one entry is
    		// left. Since n must've contained at least two children
    		// before deletion (otherwise it would not be a full node) n
    		// can never be reduced to nil.
    		//
    		// When the loop is done, pos contains the index of the single
    		// value that is left in n or -2 if n contains at least two
    		// values.
    		pos := -1
    		for i, cld := range n.Children {
    			if cld != nil {
    				if pos == -1 {
    					pos = i
    				} else {
    					pos = -2
    					break
    				}
    			}
    		}
    		if pos >= 0 {
    			if pos != 16 {
    				// If the remaining entry is a short node, it replaces
    				// n and its key gets the missing nibble tacked to the
    				// front. This avoids creating an invalid
    				// shortNode{..., shortNode{...}}.  Since the entry
    				// might not be loaded yet, resolve it just for this
    				// check.
    				cnode, err := t.resolve(n.Children[pos], prefix, []byte{byte(pos)})
    				if err != nil {
    					return false, nil, err
    				}
    				if cnode, ok := cnode.(*shortNode); ok {
    					k := append([]byte{byte(pos)}, cnode.Key...)
    					return true, &shortNode{k, cnode.Val, t.newFlag()}, nil
    				}
    			}
    			// Otherwise, n is replaced by a one-nibble short node
    			// containing the child.
    			return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil
    		}
    		// n still contains at least two values and cannot be reduced.
    		return true, n, nil
    
    	case valueNode:
    		return true, nil, nil
    
    	case nil:
    		return false, nil, nil
    
    	case hashNode:
    		// We've hit a part of the trie that isn't loaded yet. Load
    		// the node and delete from it. This leaves all child nodes on
    		// the path to the value in the trie.
    		rn, err := t.resolveHash(n, prefix, key)
    		if err != nil {
    			return false, nil, err
    		}
    		dirty, nn, err := t.delete(rn, prefix, key)
    		if !dirty || err != nil {
    			return false, rn, err
    		}
    		return true, nn, nil
    
    	default:
    		panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
    	}
    }
    
    func concat(s1 []byte, s2 ...byte) []byte {
    	r := make([]byte, len(s1)+len(s2))
    	copy(r, s1)
    	copy(r[len(s1):], s2)
    	return r
    }
    
    func (t *Trie) resolve(n node, prefix, suffix []byte) (node, error) {
    	if n, ok := n.(hashNode); ok {
    		return t.resolveHash(n, prefix, suffix)
    	}
    	return n, nil
    }
    
    func (t *Trie) resolveHash(n hashNode, prefix, suffix []byte) (node, error) {
    	enc, err := t.db.Get(n)
    	if err != nil || enc == nil {
    		return nil, &MissingNodeError{
    			RootHash:  t.originalRoot,
    			NodeHash:  common.BytesToHash(n),
    			Key:       compactHexEncode(append(prefix, suffix...)),
    			PrefixLen: len(prefix),
    			SuffixLen: len(suffix),
    		}
    	}
    	dec := mustDecodeNode(n, enc)
    	return dec, nil
    }
    
    // Root returns the root hash of the trie.
    // Deprecated: use Hash instead.
    func (t *Trie) Root() []byte { return t.Hash().Bytes() }
    
    // Hash returns the root hash of the trie. It does not write to the
    // database and can be used even if the trie doesn't have one.
    func (t *Trie) Hash() common.Hash {
    	hash, cached, _ := t.hashRoot(nil)
    	t.root = cached
    	return common.BytesToHash(hash.(hashNode))
    }
    
    // Commit writes all nodes to the trie's database.
    // Nodes are stored with their sha3 hash as the key.
    //
    // Committing flushes nodes from memory.
    // Subsequent Get calls will load nodes from the database.
    func (t *Trie) Commit() (root common.Hash, err error) {
    	if t.db == nil {
    		panic("Commit called on trie with nil database")
    	}
    	return t.CommitTo(t.db)
    }
    
    // CommitTo writes all nodes to the given database.
    // Nodes are stored with their sha3 hash as the key.
    //
    // Committing flushes nodes from memory. Subsequent Get calls will
    // load nodes from the trie's database. Calling code must ensure that
    // the changes made to db are written back to the trie's attached
    // database before using the trie.
    func (t *Trie) CommitTo(db DatabaseWriter) (root common.Hash, err error) {
    	hash, cached, err := t.hashRoot(db)
    	if err != nil {
    		return (common.Hash{}), err
    	}
    	t.root = cached
    	t.cachegen++
    	return common.BytesToHash(hash.(hashNode)), nil
    }
    
    func (t *Trie) hashRoot(db DatabaseWriter) (node, node, error) {
    	if t.root == nil {
    		return hashNode(emptyRoot.Bytes()), nil, nil
    	}
    	h := newHasher(t.cachegen, t.cachelimit)
    	defer returnHasherToPool(h)
    	return h.hash(t.root, db, true)
    }