diff --git a/crypto/ecies/asn1.go b/crypto/ecies/asn1.go
deleted file mode 100644
index d3e77d8490f8a7cafd3d56f7d481c2f28df67656..0000000000000000000000000000000000000000
--- a/crypto/ecies/asn1.go
+++ /dev/null
@@ -1,584 +0,0 @@
-// Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is>
-// Copyright (c) 2012 The Go Authors. All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-//    * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//    * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-//    * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-package ecies
-
-import (
-	"bytes"
-	"crypto"
-	"crypto/elliptic"
-	"crypto/sha1"
-	"crypto/sha256"
-	"crypto/sha512"
-	"encoding/asn1"
-	"encoding/pem"
-	"fmt"
-	"hash"
-	"math/big"
-
-	ethcrypto "github.com/ethereum/go-ethereum/crypto"
-)
-
-var (
-	secgScheme     = []int{1, 3, 132, 1}
-	shaScheme      = []int{2, 16, 840, 1, 101, 3, 4, 2}
-	ansiX962Scheme = []int{1, 2, 840, 10045}
-	x963Scheme     = []int{1, 2, 840, 63, 0}
-)
-
-var ErrInvalidPrivateKey = fmt.Errorf("ecies: invalid private key")
-
-func doScheme(base, v []int) asn1.ObjectIdentifier {
-	var oidInts asn1.ObjectIdentifier
-	oidInts = append(oidInts, base...)
-	return append(oidInts, v...)
-}
-
-// curve OID code taken from crypto/x509, including
-//	- oidNameCurve*
-//	- namedCurveFromOID
-//	- oidFromNamedCurve
-// RFC 5480, 2.1.1.1. Named Curve
-//
-// secp224r1 OBJECT IDENTIFIER ::= {
-//   iso(1) identified-organization(3) certicom(132) curve(0) 33 }
-//
-// secp256r1 OBJECT IDENTIFIER ::= {
-//   iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3)
-//   prime(1) 7 }
-//
-// secp384r1 OBJECT IDENTIFIER ::= {
-//   iso(1) identified-organization(3) certicom(132) curve(0) 34 }
-//
-// secp521r1 OBJECT IDENTIFIER ::= {
-//   iso(1) identified-organization(3) certicom(132) curve(0) 35 }
-//
-// NB: secp256r1 is equivalent to prime256v1
-type secgNamedCurve asn1.ObjectIdentifier
-
-var (
-	secgNamedCurveS256 = secgNamedCurve{1, 3, 132, 0, 10}
-	secgNamedCurveP256 = secgNamedCurve{1, 2, 840, 10045, 3, 1, 7}
-	secgNamedCurveP384 = secgNamedCurve{1, 3, 132, 0, 34}
-	secgNamedCurveP521 = secgNamedCurve{1, 3, 132, 0, 35}
-	rawCurveP256       = []byte{6, 8, 4, 2, 1, 3, 4, 7, 2, 2, 0, 6, 6, 1, 3, 1, 7}
-	rawCurveP384       = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 4}
-	rawCurveP521       = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 5}
-)
-
-func rawCurve(curve elliptic.Curve) []byte {
-	switch curve {
-	case elliptic.P256():
-		return rawCurveP256
-	case elliptic.P384():
-		return rawCurveP384
-	case elliptic.P521():
-		return rawCurveP521
-	default:
-		return nil
-	}
-}
-
-func (curve secgNamedCurve) Equal(curve2 secgNamedCurve) bool {
-	if len(curve) != len(curve2) {
-		return false
-	}
-	for i := range curve {
-		if curve[i] != curve2[i] {
-			return false
-		}
-	}
-	return true
-}
-
-func namedCurveFromOID(curve secgNamedCurve) elliptic.Curve {
-	switch {
-	case curve.Equal(secgNamedCurveS256):
-		return ethcrypto.S256()
-	case curve.Equal(secgNamedCurveP256):
-		return elliptic.P256()
-	case curve.Equal(secgNamedCurveP384):
-		return elliptic.P384()
-	case curve.Equal(secgNamedCurveP521):
-		return elliptic.P521()
-	}
-	return nil
-}
-
-func oidFromNamedCurve(curve elliptic.Curve) (secgNamedCurve, bool) {
-	switch curve {
-	case elliptic.P256():
-		return secgNamedCurveP256, true
-	case elliptic.P384():
-		return secgNamedCurveP384, true
-	case elliptic.P521():
-		return secgNamedCurveP521, true
-	case ethcrypto.S256():
-		return secgNamedCurveS256, true
-	}
-
-	return nil, false
-}
-
-// asnAlgorithmIdentifier represents the ASN.1 structure of the same name. See RFC
-// 5280, section 4.1.1.2.
-type asnAlgorithmIdentifier struct {
-	Algorithm  asn1.ObjectIdentifier
-	Parameters asn1.RawValue `asn1:"optional"`
-}
-
-func (a asnAlgorithmIdentifier) Cmp(b asnAlgorithmIdentifier) bool {
-	if len(a.Algorithm) != len(b.Algorithm) {
-		return false
-	}
-	for i := range a.Algorithm {
-		if a.Algorithm[i] != b.Algorithm[i] {
-			return false
-		}
-	}
-	return true
-}
-
-type asnHashFunction asnAlgorithmIdentifier
-
-var (
-	oidSHA1   = asn1.ObjectIdentifier{1, 3, 14, 3, 2, 26}
-	oidSHA224 = doScheme(shaScheme, []int{4})
-	oidSHA256 = doScheme(shaScheme, []int{1})
-	oidSHA384 = doScheme(shaScheme, []int{2})
-	oidSHA512 = doScheme(shaScheme, []int{3})
-)
-
-func hashFromOID(oid asn1.ObjectIdentifier) func() hash.Hash {
-	switch {
-	case oid.Equal(oidSHA1):
-		return sha1.New
-	case oid.Equal(oidSHA224):
-		return sha256.New224
-	case oid.Equal(oidSHA256):
-		return sha256.New
-	case oid.Equal(oidSHA384):
-		return sha512.New384
-	case oid.Equal(oidSHA512):
-		return sha512.New
-	}
-	return nil
-}
-
-func oidFromHash(hash crypto.Hash) (asn1.ObjectIdentifier, bool) {
-	switch hash {
-	case crypto.SHA1:
-		return oidSHA1, true
-	case crypto.SHA224:
-		return oidSHA224, true
-	case crypto.SHA256:
-		return oidSHA256, true
-	case crypto.SHA384:
-		return oidSHA384, true
-	case crypto.SHA512:
-		return oidSHA512, true
-	default:
-		return nil, false
-	}
-}
-
-var (
-	asnAlgoSHA1 = asnHashFunction{
-		Algorithm: oidSHA1,
-	}
-	asnAlgoSHA224 = asnHashFunction{
-		Algorithm: oidSHA224,
-	}
-	asnAlgoSHA256 = asnHashFunction{
-		Algorithm: oidSHA256,
-	}
-	asnAlgoSHA384 = asnHashFunction{
-		Algorithm: oidSHA384,
-	}
-	asnAlgoSHA512 = asnHashFunction{
-		Algorithm: oidSHA512,
-	}
-)
-
-// type ASNasnSubjectPublicKeyInfo struct {
-//
-// }
-//
-
-type asnSubjectPublicKeyInfo struct {
-	Algorithm   asn1.ObjectIdentifier
-	PublicKey   asn1.BitString
-	Supplements ecpksSupplements `asn1:"optional"`
-}
-
-type asnECPKAlgorithms struct {
-	Type asn1.ObjectIdentifier
-}
-
-var idPublicKeyType = doScheme(ansiX962Scheme, []int{2})
-var idEcPublicKey = doScheme(idPublicKeyType, []int{1})
-var idEcPublicKeySupplemented = doScheme(idPublicKeyType, []int{0})
-
-func curveToRaw(curve elliptic.Curve) (rv asn1.RawValue, ok bool) {
-	switch curve {
-	case elliptic.P256(), elliptic.P384(), elliptic.P521():
-		raw := rawCurve(curve)
-		return asn1.RawValue{
-			Tag:       30,
-			Bytes:     raw[2:],
-			FullBytes: raw,
-		}, true
-	default:
-		return rv, false
-	}
-}
-
-func asnECPublicKeyType(curve elliptic.Curve) (algo asnAlgorithmIdentifier, ok bool) {
-	raw, ok := curveToRaw(curve)
-	if !ok {
-		return
-	} else {
-		return asnAlgorithmIdentifier{Algorithm: idEcPublicKey,
-			Parameters: raw}, true
-	}
-}
-
-type asnECPrivKeyVer int
-
-var asnECPrivKeyVer1 asnECPrivKeyVer = 1
-
-type asnPrivateKey struct {
-	Version asnECPrivKeyVer
-	Private []byte
-	Curve   secgNamedCurve `asn1:"optional"`
-	Public  asn1.BitString
-}
-
-var asnECDH = doScheme(secgScheme, []int{12})
-
-type asnECDHAlgorithm asnAlgorithmIdentifier
-
-var (
-	dhSinglePass_stdDH_sha1kdf = asnECDHAlgorithm{
-		Algorithm: doScheme(x963Scheme, []int{2}),
-	}
-	dhSinglePass_stdDH_sha256kdf = asnECDHAlgorithm{
-		Algorithm: doScheme(secgScheme, []int{11, 1}),
-	}
-	dhSinglePass_stdDH_sha384kdf = asnECDHAlgorithm{
-		Algorithm: doScheme(secgScheme, []int{11, 2}),
-	}
-	dhSinglePass_stdDH_sha224kdf = asnECDHAlgorithm{
-		Algorithm: doScheme(secgScheme, []int{11, 0}),
-	}
-	dhSinglePass_stdDH_sha512kdf = asnECDHAlgorithm{
-		Algorithm: doScheme(secgScheme, []int{11, 3}),
-	}
-)
-
-func (a asnECDHAlgorithm) Cmp(b asnECDHAlgorithm) bool {
-	if len(a.Algorithm) != len(b.Algorithm) {
-		return false
-	}
-	for i := range a.Algorithm {
-		if a.Algorithm[i] != b.Algorithm[i] {
-			return false
-		}
-	}
-	return true
-}
-
-// asnNISTConcatenation is the only supported KDF at this time.
-type asnKeyDerivationFunction asnAlgorithmIdentifier
-
-var asnNISTConcatenationKDF = asnKeyDerivationFunction{
-	Algorithm: doScheme(secgScheme, []int{17, 1}),
-}
-
-func (a asnKeyDerivationFunction) Cmp(b asnKeyDerivationFunction) bool {
-	if len(a.Algorithm) != len(b.Algorithm) {
-		return false
-	}
-	for i := range a.Algorithm {
-		if a.Algorithm[i] != b.Algorithm[i] {
-			return false
-		}
-	}
-	return true
-}
-
-var eciesRecommendedParameters = doScheme(secgScheme, []int{7})
-var eciesSpecifiedParameters = doScheme(secgScheme, []int{8})
-
-type asnECIESParameters struct {
-	KDF asnKeyDerivationFunction     `asn1:"optional"`
-	Sym asnSymmetricEncryption       `asn1:"optional"`
-	MAC asnMessageAuthenticationCode `asn1:"optional"`
-}
-
-type asnSymmetricEncryption asnAlgorithmIdentifier
-
-var (
-	aes128CTRinECIES = asnSymmetricEncryption{
-		Algorithm: doScheme(secgScheme, []int{21, 0}),
-	}
-	aes192CTRinECIES = asnSymmetricEncryption{
-		Algorithm: doScheme(secgScheme, []int{21, 1}),
-	}
-	aes256CTRinECIES = asnSymmetricEncryption{
-		Algorithm: doScheme(secgScheme, []int{21, 2}),
-	}
-)
-
-func (a asnSymmetricEncryption) Cmp(b asnSymmetricEncryption) bool {
-	if len(a.Algorithm) != len(b.Algorithm) {
-		return false
-	}
-	for i := range a.Algorithm {
-		if a.Algorithm[i] != b.Algorithm[i] {
-			return false
-		}
-	}
-	return true
-}
-
-type asnMessageAuthenticationCode asnAlgorithmIdentifier
-
-var (
-	hmacFull = asnMessageAuthenticationCode{
-		Algorithm: doScheme(secgScheme, []int{22}),
-	}
-)
-
-func (a asnMessageAuthenticationCode) Cmp(b asnMessageAuthenticationCode) bool {
-	if len(a.Algorithm) != len(b.Algorithm) {
-		return false
-	}
-	for i := range a.Algorithm {
-		if a.Algorithm[i] != b.Algorithm[i] {
-			return false
-		}
-	}
-	return true
-}
-
-type ecpksSupplements struct {
-	ECDomain      secgNamedCurve
-	ECCAlgorithms eccAlgorithmSet
-}
-
-type eccAlgorithmSet struct {
-	ECDH  asnECDHAlgorithm   `asn1:"optional"`
-	ECIES asnECIESParameters `asn1:"optional"`
-}
-
-func marshalSubjectPublicKeyInfo(pub *PublicKey) (subj asnSubjectPublicKeyInfo, err error) {
-	subj.Algorithm = idEcPublicKeySupplemented
-	curve, ok := oidFromNamedCurve(pub.Curve)
-	if !ok {
-		err = ErrInvalidPublicKey
-		return
-	}
-	subj.Supplements.ECDomain = curve
-	if pub.Params != nil {
-		subj.Supplements.ECCAlgorithms.ECDH = paramsToASNECDH(pub.Params)
-		subj.Supplements.ECCAlgorithms.ECIES = paramsToASNECIES(pub.Params)
-	}
-	pubkey := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
-	subj.PublicKey = asn1.BitString{
-		BitLength: len(pubkey) * 8,
-		Bytes:     pubkey,
-	}
-	return
-}
-
-// Encode a public key to DER format.
-func MarshalPublic(pub *PublicKey) ([]byte, error) {
-	subj, err := marshalSubjectPublicKeyInfo(pub)
-	if err != nil {
-		return nil, err
-	}
-	return asn1.Marshal(subj)
-}
-
-// Decode a DER-encoded public key.
-func UnmarshalPublic(in []byte) (pub *PublicKey, err error) {
-	var subj asnSubjectPublicKeyInfo
-
-	if _, err = asn1.Unmarshal(in, &subj); err != nil {
-		return
-	}
-	if !subj.Algorithm.Equal(idEcPublicKeySupplemented) {
-		err = ErrInvalidPublicKey
-		return
-	}
-	pub = new(PublicKey)
-	pub.Curve = namedCurveFromOID(subj.Supplements.ECDomain)
-	x, y := elliptic.Unmarshal(pub.Curve, subj.PublicKey.Bytes)
-	if x == nil {
-		err = ErrInvalidPublicKey
-		return
-	}
-	pub.X = x
-	pub.Y = y
-	pub.Params = new(ECIESParams)
-	asnECIEStoParams(subj.Supplements.ECCAlgorithms.ECIES, pub.Params)
-	asnECDHtoParams(subj.Supplements.ECCAlgorithms.ECDH, pub.Params)
-	if pub.Params == nil {
-		if pub.Params = ParamsFromCurve(pub.Curve); pub.Params == nil {
-			err = ErrInvalidPublicKey
-		}
-	}
-	return
-}
-
-func marshalPrivateKey(prv *PrivateKey) (ecprv asnPrivateKey, err error) {
-	ecprv.Version = asnECPrivKeyVer1
-	ecprv.Private = prv.D.Bytes()
-
-	var ok bool
-	ecprv.Curve, ok = oidFromNamedCurve(prv.PublicKey.Curve)
-	if !ok {
-		err = ErrInvalidPrivateKey
-		return
-	}
-
-	var pub []byte
-	if pub, err = MarshalPublic(&prv.PublicKey); err != nil {
-		return
-	} else {
-		ecprv.Public = asn1.BitString{
-			BitLength: len(pub) * 8,
-			Bytes:     pub,
-		}
-	}
-	return
-}
-
-// Encode a private key to DER format.
-func MarshalPrivate(prv *PrivateKey) ([]byte, error) {
-	ecprv, err := marshalPrivateKey(prv)
-	if err != nil {
-		return nil, err
-	}
-	return asn1.Marshal(ecprv)
-}
-
-// Decode a private key from a DER-encoded format.
-func UnmarshalPrivate(in []byte) (prv *PrivateKey, err error) {
-	var ecprv asnPrivateKey
-
-	if _, err = asn1.Unmarshal(in, &ecprv); err != nil {
-		return
-	} else if ecprv.Version != asnECPrivKeyVer1 {
-		err = ErrInvalidPrivateKey
-		return
-	}
-
-	privateCurve := namedCurveFromOID(ecprv.Curve)
-	if privateCurve == nil {
-		err = ErrInvalidPrivateKey
-		return
-	}
-
-	prv = new(PrivateKey)
-	prv.D = new(big.Int).SetBytes(ecprv.Private)
-
-	if pub, err := UnmarshalPublic(ecprv.Public.Bytes); err != nil {
-		return nil, err
-	} else {
-		prv.PublicKey = *pub
-	}
-
-	return
-}
-
-// Export a public key to PEM format.
-func ExportPublicPEM(pub *PublicKey) (out []byte, err error) {
-	der, err := MarshalPublic(pub)
-	if err != nil {
-		return
-	}
-
-	var block pem.Block
-	block.Type = "ELLIPTIC CURVE PUBLIC KEY"
-	block.Bytes = der
-
-	buf := new(bytes.Buffer)
-	err = pem.Encode(buf, &block)
-	if err != nil {
-		return
-	} else {
-		out = buf.Bytes()
-	}
-	return
-}
-
-// Export a private key to PEM format.
-func ExportPrivatePEM(prv *PrivateKey) (out []byte, err error) {
-	der, err := MarshalPrivate(prv)
-	if err != nil {
-		return
-	}
-
-	var block pem.Block
-	block.Type = "ELLIPTIC CURVE PRIVATE KEY"
-	block.Bytes = der
-
-	buf := new(bytes.Buffer)
-	err = pem.Encode(buf, &block)
-	if err != nil {
-		return
-	} else {
-		out = buf.Bytes()
-	}
-	return
-}
-
-// Import a PEM-encoded public key.
-func ImportPublicPEM(in []byte) (pub *PublicKey, err error) {
-	p, _ := pem.Decode(in)
-	if p == nil || p.Type != "ELLIPTIC CURVE PUBLIC KEY" {
-		return nil, ErrInvalidPublicKey
-	}
-
-	pub, err = UnmarshalPublic(p.Bytes)
-	return
-}
-
-// Import a PEM-encoded private key.
-func ImportPrivatePEM(in []byte) (prv *PrivateKey, err error) {
-	p, _ := pem.Decode(in)
-	if p == nil || p.Type != "ELLIPTIC CURVE PRIVATE KEY" {
-		return nil, ErrInvalidPrivateKey
-	}
-
-	prv, err = UnmarshalPrivate(p.Bytes)
-	return
-}
diff --git a/crypto/ecies/ecies.go b/crypto/ecies/ecies.go
index 2a16f20a2e6c63658625b05d0e5de7c0d4ee77b0..1d5f96ed27f0aba0f20cd14630d426cbf78faa19 100644
--- a/crypto/ecies/ecies.go
+++ b/crypto/ecies/ecies.go
@@ -151,14 +151,16 @@ var (
 func incCounter(ctr []byte) {
 	if ctr[3]++; ctr[3] != 0 {
 		return
-	} else if ctr[2]++; ctr[2] != 0 {
+	}
+	if ctr[2]++; ctr[2] != 0 {
 		return
-	} else if ctr[1]++; ctr[1] != 0 {
+	}
+	if ctr[1]++; ctr[1] != 0 {
 		return
-	} else if ctr[0]++; ctr[0] != 0 {
+	}
+	if ctr[0]++; ctr[0] != 0 {
 		return
 	}
-	return
 }
 
 // NIST SP 800-56 Concatenation Key Derivation Function (see section 5.8.1).
diff --git a/crypto/ecies/ecies_test.go b/crypto/ecies/ecies_test.go
index 7c454aa73046fbff6a3b04d4a488e1925d6f5ffd..9cd5c79f7ec1662ce8209a79076d9b4427f10140 100644
--- a/crypto/ecies/ecies_test.go
+++ b/crypto/ecies/ecies_test.go
@@ -37,7 +37,6 @@ import (
 	"encoding/hex"
 	"flag"
 	"fmt"
-	"io/ioutil"
 	"math/big"
 	"testing"
 
@@ -63,8 +62,7 @@ func TestKDF(t *testing.T) {
 		t.FailNow()
 	}
 	if len(k) != 64 {
-		fmt.Printf("KDF: generated key is the wrong size (%d instead of 64\n",
-			len(k))
+		fmt.Printf("KDF: generated key is the wrong size (%d instead of 64\n", len(k))
 		t.FailNow()
 	}
 }
@@ -74,14 +72,9 @@ var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match")
 // cmpParams compares a set of ECIES parameters. We assume, as per the
 // docs, that AES is the only supported symmetric encryption algorithm.
 func cmpParams(p1, p2 *ECIESParams) bool {
-	if p1.hashAlgo != p2.hashAlgo {
-		return false
-	} else if p1.KeyLen != p2.KeyLen {
-		return false
-	} else if p1.BlockSize != p2.BlockSize {
-		return false
-	}
-	return true
+	return p1.hashAlgo == p2.hashAlgo &&
+		p1.KeyLen == p2.KeyLen &&
+		p1.BlockSize == p2.BlockSize
 }
 
 // cmpPublic returns true if the two public keys represent the same pojnt.
@@ -212,118 +205,6 @@ func TestTooBigSharedKey(t *testing.T) {
 	}
 }
 
-// Ensure a public key can be successfully marshalled and unmarshalled, and
-// that the decoded key is the same as the original.
-func TestMarshalPublic(t *testing.T) {
-	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		t.Fatalf("GenerateKey error: %s", err)
-	}
-
-	out, err := MarshalPublic(&prv.PublicKey)
-	if err != nil {
-		t.Fatalf("MarshalPublic error: %s", err)
-	}
-
-	pub, err := UnmarshalPublic(out)
-	if err != nil {
-		t.Fatalf("UnmarshalPublic error: %s", err)
-	}
-
-	if !cmpPublic(prv.PublicKey, *pub) {
-		t.Fatal("ecies: failed to unmarshal public key")
-	}
-}
-
-// Ensure that a private key can be encoded into DER format, and that
-// the resulting key is properly parsed back into a public key.
-func TestMarshalPrivate(t *testing.T) {
-	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	out, err := MarshalPrivate(prv)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	if dumpEnc {
-		ioutil.WriteFile("test.out", out, 0644)
-	}
-
-	prv2, err := UnmarshalPrivate(out)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	if !cmpPrivate(prv, prv2) {
-		fmt.Println("ecdh: private key import failed")
-		t.FailNow()
-	}
-}
-
-// Ensure that a private key can be successfully encoded to PEM format, and
-// the resulting key is properly parsed back in.
-func TestPrivatePEM(t *testing.T) {
-	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	out, err := ExportPrivatePEM(prv)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	if dumpEnc {
-		ioutil.WriteFile("test.key", out, 0644)
-	}
-
-	prv2, err := ImportPrivatePEM(out)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	} else if !cmpPrivate(prv, prv2) {
-		fmt.Println("ecdh: import from PEM failed")
-		t.FailNow()
-	}
-}
-
-// Ensure that a public key can be successfully encoded to PEM format, and
-// the resulting key is properly parsed back in.
-func TestPublicPEM(t *testing.T) {
-	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	out, err := ExportPublicPEM(&prv.PublicKey)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	if dumpEnc {
-		ioutil.WriteFile("test.pem", out, 0644)
-	}
-
-	pub2, err := ImportPublicPEM(out)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	} else if !cmpPublic(prv.PublicKey, *pub2) {
-		fmt.Println("ecdh: import from PEM failed")
-		t.FailNow()
-	}
-}
-
 // Benchmark the generation of P256 keys.
 func BenchmarkGenerateKeyP256(b *testing.B) {
 	for i := 0; i < b.N; i++ {
@@ -437,74 +318,27 @@ func TestDecryptShared2(t *testing.T) {
 	}
 }
 
-// TestMarshalEncryption validates the encode/decode produces a valid
-// ECIES encryption key.
-func TestMarshalEncryption(t *testing.T) {
-	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	out, err := MarshalPrivate(prv1)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	prv2, err := UnmarshalPrivate(out)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	message := []byte("Hello, world.")
-	ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-	if !bytes.Equal(pt, message) {
-		fmt.Println("ecies: plaintext doesn't match message")
-		t.FailNow()
-	}
-
-	_, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
-	if err != nil {
-		fmt.Println(err.Error())
-		t.FailNow()
-	}
-
-}
-
 type testCase struct {
 	Curve    elliptic.Curve
 	Name     string
-	Expected bool
+	Expected *ECIESParams
 }
 
 var testCases = []testCase{
 	{
 		Curve:    elliptic.P256(),
 		Name:     "P256",
-		Expected: true,
+		Expected: ECIES_AES128_SHA256,
 	},
 	{
 		Curve:    elliptic.P384(),
 		Name:     "P384",
-		Expected: true,
+		Expected: ECIES_AES256_SHA384,
 	},
 	{
 		Curve:    elliptic.P521(),
 		Name:     "P521",
-		Expected: true,
+		Expected: ECIES_AES256_SHA512,
 	},
 }
 
@@ -519,10 +353,10 @@ func TestParamSelection(t *testing.T) {
 
 func testParamSelection(t *testing.T, c testCase) {
 	params := ParamsFromCurve(c.Curve)
-	if params == nil && c.Expected {
+	if params == nil && c.Expected != nil {
 		fmt.Printf("%s (%s)\n", ErrInvalidParams.Error(), c.Name)
 		t.FailNow()
-	} else if params != nil && !c.Expected {
+	} else if params != nil && !cmpParams(params, c.Expected) {
 		fmt.Printf("ecies: parameters should be invalid (%s)\n",
 			c.Name)
 		t.FailNow()
diff --git a/crypto/ecies/params.go b/crypto/ecies/params.go
index 826d90c8455c47e12f47a010e74b61a45cf17590..6312daf5a1c1af7aa3e7c65960da6e64add6befd 100644
--- a/crypto/ecies/params.go
+++ b/crypto/ecies/params.go
@@ -114,97 +114,4 @@ func AddParamsForCurve(curve elliptic.Curve, params *ECIESParams) {
 // Only the curves P256, P384, and P512 are supported.
 func ParamsFromCurve(curve elliptic.Curve) (params *ECIESParams) {
 	return paramsFromCurve[curve]
-
-	/*
-		switch curve {
-		case elliptic.P256():
-			return ECIES_AES128_SHA256
-		case elliptic.P384():
-			return ECIES_AES256_SHA384
-		case elliptic.P521():
-			return ECIES_AES256_SHA512
-		default:
-			return nil
-		}
-	*/
-}
-
-// ASN.1 encode the ECIES parameters relevant to the encryption operations.
-func paramsToASNECIES(params *ECIESParams) (asnParams asnECIESParameters) {
-	if nil == params {
-		return
-	}
-	asnParams.KDF = asnNISTConcatenationKDF
-	asnParams.MAC = hmacFull
-	switch params.KeyLen {
-	case 16:
-		asnParams.Sym = aes128CTRinECIES
-	case 24:
-		asnParams.Sym = aes192CTRinECIES
-	case 32:
-		asnParams.Sym = aes256CTRinECIES
-	}
-	return
-}
-
-// ASN.1 encode the ECIES parameters relevant to ECDH.
-func paramsToASNECDH(params *ECIESParams) (algo asnECDHAlgorithm) {
-	switch params.hashAlgo {
-	case crypto.SHA224:
-		algo = dhSinglePass_stdDH_sha224kdf
-	case crypto.SHA256:
-		algo = dhSinglePass_stdDH_sha256kdf
-	case crypto.SHA384:
-		algo = dhSinglePass_stdDH_sha384kdf
-	case crypto.SHA512:
-		algo = dhSinglePass_stdDH_sha512kdf
-	}
-	return
-}
-
-// ASN.1 decode the ECIES parameters relevant to the encryption stage.
-func asnECIEStoParams(asnParams asnECIESParameters, params *ECIESParams) {
-	if !asnParams.KDF.Cmp(asnNISTConcatenationKDF) {
-		params = nil
-		return
-	} else if !asnParams.MAC.Cmp(hmacFull) {
-		params = nil
-		return
-	}
-
-	switch {
-	case asnParams.Sym.Cmp(aes128CTRinECIES):
-		params.KeyLen = 16
-		params.BlockSize = 16
-		params.Cipher = aes.NewCipher
-	case asnParams.Sym.Cmp(aes192CTRinECIES):
-		params.KeyLen = 24
-		params.BlockSize = 16
-		params.Cipher = aes.NewCipher
-	case asnParams.Sym.Cmp(aes256CTRinECIES):
-		params.KeyLen = 32
-		params.BlockSize = 16
-		params.Cipher = aes.NewCipher
-	default:
-		params = nil
-	}
-}
-
-// ASN.1 decode the ECIES parameters relevant to ECDH.
-func asnECDHtoParams(asnParams asnECDHAlgorithm, params *ECIESParams) {
-	if asnParams.Cmp(dhSinglePass_stdDH_sha224kdf) {
-		params.hashAlgo = crypto.SHA224
-		params.Hash = sha256.New224
-	} else if asnParams.Cmp(dhSinglePass_stdDH_sha256kdf) {
-		params.hashAlgo = crypto.SHA256
-		params.Hash = sha256.New
-	} else if asnParams.Cmp(dhSinglePass_stdDH_sha384kdf) {
-		params.hashAlgo = crypto.SHA384
-		params.Hash = sha512.New384
-	} else if asnParams.Cmp(dhSinglePass_stdDH_sha512kdf) {
-		params.hashAlgo = crypto.SHA512
-		params.Hash = sha512.New
-	} else {
-		params = nil
-	}
 }
diff --git a/crypto/sha3/sha3.go b/crypto/sha3/sha3.go
index c86167c0b4ebaabba21f0a9bf04eecb4964ef056..b12a35c87fc89befdb8a76272647b5600b4c80fe 100644
--- a/crypto/sha3/sha3.go
+++ b/crypto/sha3/sha3.go
@@ -42,9 +42,8 @@ type state struct {
 	storage [maxRate]byte
 
 	// Specific to SHA-3 and SHAKE.
-	fixedOutput bool            // whether this is a fixed-output-length instance
-	outputLen   int             // the default output size in bytes
-	state       spongeDirection // whether the sponge is absorbing or squeezing
+	outputLen int             // the default output size in bytes
+	state     spongeDirection // whether the sponge is absorbing or squeezing
 }
 
 // BlockSize returns the rate of sponge underlying this hash function.
diff --git a/crypto/sha3/sha3_test.go b/crypto/sha3/sha3_test.go
index c433761a8ab922e337b62838277b843956bf0446..0e33676ce64bdfd3aa6ae06ddc56b14a269bbff8 100644
--- a/crypto/sha3/sha3_test.go
+++ b/crypto/sha3/sha3_test.go
@@ -53,15 +53,6 @@ var testShakes = map[string]func() ShakeHash{
 	"SHAKE256": NewShake256,
 }
 
-// decodeHex converts a hex-encoded string into a raw byte string.
-func decodeHex(s string) []byte {
-	b, err := hex.DecodeString(s)
-	if err != nil {
-		panic(err)
-	}
-	return b
-}
-
 // structs used to marshal JSON test-cases.
 type KeccakKats struct {
 	Kats map[string][]struct {
@@ -125,7 +116,7 @@ func TestKeccakKats(t *testing.T) {
 
 // TestUnalignedWrite tests that writing data in an arbitrary pattern with
 // small input buffers.
-func testUnalignedWrite(t *testing.T) {
+func TestUnalignedWrite(t *testing.T) {
 	testUnalignedAndGeneric(t, func(impl string) {
 		buf := sequentialBytes(0x10000)
 		for alg, df := range testDigests {